Two-compartment model of inner medullary vasculature supports dual modes of vasopressin-regulated inner medullary blood flow.

نویسندگان

  • Julie Kim
  • Thomas L Pannabecker
چکیده

The outer zone of the renal inner medulla (IM) is spatially partitioned into two distinct interstitial compartments in the transverse dimension. In one compartment (the intercluster region), collecting ducts (CDs) are absent and vascular bundles are present. Ascending vasa recta (AVR) that lie within and ascend through the intercluster region (intercluster AVR are designated AVR(2)) participate with descending vasa recta (DVR) in classic countercurrent exchange. Direct evidence from former studies suggests that vasopressin binds to V1 receptors on smooth muscle-like pericytes that regulate vessel diameter and blood flow rate in DVR in this compartment. In a second transverse compartment (the intracluster region), DVR are absent and CDs and AVR are present. Many AVR of the intracluster compartment exhibit multiple branching, with formation of many short interconnecting segments (intracluster AVR are designated AVR(1)). AVR(1) are linked together and connect intercluster DVR to AVR(2) by way of sparse networks. Vasopressin V2 receptors regulate multiple fluid and solute transport pathways in CDs in the intracluster compartment. Reabsorbate from IMCDs, ascending thin limbs, and prebend segments passes into AVR(1) and is conveyed either upward toward DVR and AVR(2) of the intercluster region, or is retained within the intracluster region and is conveyed toward higher levels of the intracluster region. Thus variable rates of fluid reabsorption by CDs potentially lead to variable blood flow rates in either compartment. Net flow between the two transverse compartments would be dependent on the degree of structural and functional coupling between intracluster vessels and intercluster vessels. In the outermost IM, AVR(1) pass directly from the IM to the outer medulla, bypassing vascular bundles, the primary blood outflow route. Therefore, two defined vascular pathways exist for fluid outflow from the IM. Compartmental partitioning of V1 and V2 receptors may underlie vasopressin-regulated functional compartmentation of IM blood flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different localization and regulation of two types of vasopressin receptor messenger RNA in microdissected rat nephron segments using reverse transcription polymerase chain reaction.

Recent studies have revealed that arginine vasopressin (AVP) has at least two types of receptors in the kidney: V1a receptor and V2 receptor. In this study, microlocalization of mRNA coding for V1a and V2 receptors was carried out in the rat kidney using a reverse transcription and polymerase chain reaction. Large signals for V1a receptor PCR product were detected in the glomerulus, initial cor...

متن کامل

Correction of age-related polyuria by dDAVP: molecular analysis of aquaporins and urea transporters.

Senescent female WAG/Rij rats exhibit polyuria without obvious renal disease or defects in vasopressin plasma level or V(2) receptor mRNA expression. Normalization of urine flow rate by 1-desamino-8-d-arginine vasopressin (dDAVP) was investigated in these animals. Long-term dDAVP infusion into 30-mo-old rats reduced urine flow rate and increased urine osmolality to levels comparable to those in...

متن کامل

Urinary concentrating defect in mice with selective deletion of phloretin-sensitive urea transporters in the renal collecting duct.

To investigate the role of inner medullary collecting duct (IMCD) urea transporters in the renal concentrating mechanism, we deleted 3 kb of the UT-A urea transporter gene containing a single 140-bp exon (exon 10). Deletion of this segment selectively disrupted expression of the two known IMCD isoforms of UT-A, namely UT-A1 and UT-A3, producing UT-A1/3(-/-) mice. In isolated perfused IMCDs from...

متن کامل

Why does the plasma urea concentration increase in acute dehydration?

Acute dehydration biochemically manifests itself with mild uremia and a normal creatinine concentration. The reason for this, as quoted in popular medical textbooks, is that there is increased reabsorption of urea by the kidneys (1). This explanation is rarely taken further by clinical tutors or lectures on laboratory medicine. However, an appreciation of the physiology of the renal tubules all...

متن کامل

Aquaporin-2 expression in primary cultured rat inner medullary collecting duct cells.

Cultured renal epithelial cells rapidly downregulate expression of the vasopressin-regulated water channel aquaporin-2 (AQP-2). Our aim was to define conditions that favor maintenance of AQP-2 expression in vitro without genetic manipulation. We show here that primary cultures of rat inner medullary collecting duct (IMCD) cells retain AQP-2 expression for at least 6 days when grown with dibutyr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 299 1  شماره 

صفحات  -

تاریخ انتشار 2010